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1.0 INTRODUCTION

The radar data generator calculates range and azimuth given
the geographic coordinates of a radar, the simulated stereographic
coordinates (X,Y) and height of an aircraft,and the geographic
coordinates of the JSS region center. The generation of a radar
report involves a coordinate transformation, a rotation and a
conversion. The transformation is from stereographic coordinates
into a rectangular coordinate system whose axes are directed north,
east and vertical from the region center. The rotation maps the
coordinates from this region centered rectangular coordinate system
to a system whose axes are directed north, east and vertical at
the radar site. The conversion from Cartesian to polar coordinates
provides range and azimuth. This report derives the transformation
and rotation formulary to be used for radar data generation in the
Jss.
Background

The algorithm used for geners inu of simulated radar data is
in effect the inve-se of the coordinate conversion and transforma-

.« used to project radar reports onto a common coordinate plane.

Radar reports from a network of sensors are typically converted
to common plane coordinates by stereographic projection. The equa-
tions for determining locations on a stereographic plane were
developed for a sphere because the mathematics were simpler than

for an ellipsoidal earth model. The equations for stereographically




projecting a point referenced to the earth's surface reflect a
two-step process: (a) points on the ellipsoid are conformally
mapped onto a sphere, called the conformal sphere, and then (b) the
mapped points on the conformal sphere are stereographically pro-
jected onto a plane tangent to the conformal sphere. The radius

of the conformal sphere is calculated to minimize distortion in

the projection process. This radius is shown in another document to

very inversely with region size.




2.0 COORDINATE TRANSFORMATION

Assume that one is given the position (X,Y) of an object
stereographically projected on a plane tangent to a conformal
sphere of radius EO. The problem is to find the range and azimuth
coordinates (P,0) of the object measured with respect to a radar
on the surface of the earth.

Figure 1 depicts the stereographic projection geometry. The
ROCC region center is the geographic location of the center of the
smallest circle which encompasses all radar sensors tied into the
ROCC. The center of the tangent plane is the ROCC region center,
point A. The planar location of an aircraft at point T in Figure 1
is described by the vector AP and is determined as a function of

the angle Yy and conformal sphere radius Eo as follows:
AP = 2E_ Tan (¥/2) ¢V

where point P is the aircraft's planar location. To describe point
P in vector notation with respect to a rectangular coordinate sys-
tem centered at 0, the ENZ coordinate system depicted in Figure 2
is introduced. Let AP be defined in terms of common plane coor-

dinates (X,Y) as follows:

AP = XE+ YN+ 02

=i
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Figure 2 VECTOR OP IN RECTANGULAR COORDINATES
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where Z is normal to the surface of the sphere at the region center :
and parallel to OA, and the EN plane is parallel to the tangent plane
with the N axis directed due north.

Figure 2 shows the vector OP in the rectangular coordinate system.

OP is found by passing a line through point 0 and point B and inter-
secting with the tangent plane at point P. The vector OP may be
described by:
OP=XE+ YN+ |A0|Z
where:

|AO| = 2E

or:

j To simplify subsequent analysis, all coordinates will be norma-
lized and referenced to a conformal sphere of unity radius. This is

accomplished by dividing the scalar components of the vectors by the

radius of the conformal sphere Eo. Thus the normalized vectors GFN
and KFN are defined by:

U= X/Eo

V= Y/Eo

W= (2E°)/E° = 2

i [U

oP,_ = |v (2)
o 1]
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and:
AP = |V (3)
. 0

The vector CT in Figure 1 is constructed from the center of
the conformal sphere to an aircraft at point T. The magnitude of
CT is the sum of the aircraft height (HT) and the radius of the
earth as shown in Figure 3. Normalizing the vector CT as described

previously, the magnitude of ]ET&I is as follows:
|CTN| - (B +H)/E

where:

Es = Earth radius,

HT = Aircraft height, and

Eo = Conformal sphere radius
The vector EEN may be defined as:

Cly = |CTN|CBN

where CB is a unit vector parallel to CT and where:

11




FIGURE 3__
LENGTH OF CT
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B

Let us now derive the scalar components Cl' C,, and C, of the

2 3
vector Ei& in terms of EBN and BEN as shown in Figure 4:
Vectors 63& and 6;& are in the same direction but with differ-

ent magnitudes so EEN can be defined as:

Thus:

R et (6)

To solve for K we note that the triangles ABAO and AAPO in Figure 4
are similar. The triangles share angle AOB, and angles OAP and

OBA are both right angles; thus:

loBy| oAyl
L . M
oA | |op |
From (6) and (7)

— — 2

0Byl oAy

= — 2

lory | lop |
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FIGURE 4
SIMILAR TRIANGLES
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f By the law of right triangles:

— 2 — 2 — 2
G 1% = [GRy12 + (Bl

80,

—_— 2
oA |
B By ®
loag|® + |ap|
From Equation 3:
IKFN|2 = 0P+ v? 4ol

and vector 5;& is the diameter of a unit radius circle so:

= 12
loay|® = 4
Thus, K is found to be:
K = -———-{%——-—i 9)
4+U"  +V
From equation (6) BE& is defined as:
L U 4u/ 4 + ug + v.f,)
OBN = K |V - 4V/ (4 + Uz + Vz) (10)
2 8/(4 +U” +V)
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From Figure 4, we note that:

where:
[0 ]
co, = 0
" -1
Thus,
T 4u/ (4 + ug + vg)
CBN - 4v/( +2U +V )2 2 (11)
(4-U“=VT)/ (4 + U° + V)

Coordinate Rotation

Having obtained the unit vector Ei“ that is directed toward the
aircraft in the normalized ENZ coordinate system, the slant range
and azimuth (p,0) from a radar site to the aircraft can be calculated.
The ENZ coordinate system is centered at the ROCC Region Center; its
axes are directed toward east, north and normal to the surface of
the sphere at the region center. The latitude and longitude of the
region center are defined as (Ao.qo) respectively.

To calculate (p,0), the ENZ coordinate system must be rotated into
a system whose axes are directed east, north and normal to the surface
of the sphere at the radar sites. (As,os) are defined as the latitude

and longitude of the radar site.

16




Positive longitudes, A, will be measured counterclockwise, or
west, from the prime meridian, A=0° located in Greenwich, England.
Positive latitudes, §, will be measured north from the equator, f=0.

Figure 5 depicts a set of rotations that align the ENZ axes
toward east, north and normal to the surface of the sphere at the
radar site.

In summary the sequence of rotations is:

1) CCW about E, bo, to align N, with the earth's North axis

2) CCW about Nl‘ A\ys SO that 22 lies on the prime meridian

3) CW about “2’ As’ so that 23 lies at longitude xs

4) CW about 53, Os. so that Za is vertical and Nl is directed

north at the radar site,

The transformation equations to accomplish these rotations are

as follows: :

-

E, 1.0 0 cosA 0 -sin) |
s s

N4 = 0 cosba -sinﬂs 0 1 0 X
Z“ L0 sinﬂs cosb8 L-sinks 0 cosAs‘

=
cosA 0 sin) E 0 Q T E
o o
0 1 0 0 c:osbo sinbo N
:sinxo 0 cosAo L0 -sinbo c:oaﬁo.d A

17




A) ORIGINAL (E,N,Z) COORDINATES 8) I18* ROTATION: CCW ABOUT E, ¢
N, ALIGNED WITH NORTH AXIS OF EARTH

3
NORTH

¢ axiS

A

EQUATOR
$:0

¢) 2" ROTATION: CCW ABOUT NjAq 0] 3" ROTATION: CW ABOUT Na kg
2, LIES ON PRIME MERIDIAN Z, LIES AT LONGITUDE Aq

NORTH
AXIS

PRIME
MERIDIAN

€) 4'" ROTATION: CW ABOUT E3, ¥
2,1S VERTICAL AND N, IS DIRECTED NORTH AT THE RADAR

FIGURE 5
ROTATIONS TO RADAR SITE COORDINATES
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To simplify the process into a product of 2 matrices instead of |

4, let A(Ds.xs) equal the product of the first two matrices:

-

1 0 0 cosA 0 =-sinx
s s
A(Os,xs) = |0 cosﬂs -sinﬂs 0 1 0
0 sinos cosﬂs sin)‘s 0 cosAQ
cosA 0 ~sin)
s s
A(ﬂs,xs) = ~sinkssinbs cosbs 'sinﬁscosAs
cosbssinks sinﬁs cosﬁscosN2

r ) Let B(bo,xo) equal the product of the second two matrices:
cosxo -sinxosinbo cosbosinAO |
B(bo,xo) = 0 cosD0 sinﬂo
-sinAo -sinﬁocosko cosﬂocosko

Notice that if we ignore the subscripts B(f,)\) = AI(O,A).

The equation can then be written:

tm
2

T
N o= A AT )

~N
N

AL ; g 4/ (s + 03 + vd &
CB = A(D_,2. ) A0 ,2) {4V/(4 + U, + VD) = |92
N 8’"s o’"o (a-ué & VZ)/(4 + UZ + v2) a3
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The azimuth of the aircraft is calculated by:

%
@ = ARCTAN (—->
e

To calculate slant range, the coordinate system must be re-

scaled, referenced to a sphere whose radius is that of the earth.
A vector from the center of the sphere to the radar is described

as follows:

E = Earth radius at the radar
HR = Height of the radar antenna

A vector to the aircraft is found from CB'N by:

a

1

T = (Es + “T) CB'N - (Es + HT) a,
a

3

where:
“T = Aircraft Height

Slant range p is the difference between the R and T vectors:

20




P = |T - R|

e \/-[u;‘l + H,r)al] 4 +T(zs + “r)‘z] L [(Es +HDa, - (B + H.R)] :




3.0 CONCLUSION

This report explains a formulation used for simulated radar
data generation. The algoritim would be absolutely accurate if the
earth was a sphere. Slight errors may be introduced in conversion
from an ellipsoidal to a spherical earth due to approximations in the
conformal latitude calculation and the calculation of earth radius
(Es). To minimize these errors, the conformal latitude and earth

radius approximations should be as accurate as possible.
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